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Abstract. Thermal management for battery systems is crucial for its performance and reliability, especially in the application of
electrical vehicles. Using digital models in order to control and monitor battery systems has gained significant interest. In this
work a concept for a real-time applicable model of a battery system is proposed. The model is built using various model reduction
approaches. First, a high dimensional model (HDM) of a battery is set up and validated with test data. In the proposed approach
the HDM is separated into a thermo-electric, a solid and a fluid model, which are coupled though input and output parameters.
Different model reduction techniques and approximations are discussed for the linear solid part and non-linear fluid part. The
thermal model is coupled with a thermal-electric model for the heat generation inside the battery cells.

INTRODUCTION

The thermal behavior of battery systems limits the range and reliability of electric vehicles and is crucial for its
performance. Thus, various approaches for thermal management and control have been studied for the application in
electric vehicles [1, 2, 3]. One possibility to monitor and control the thermal behavior of a battery is to implement
temperature sensors. This however results in a high amount of sensing units needed to map the whole battery system
thermally. Further, only temperatures on the surface of the battery cells and modules can be measured, while the critical
temperatures and hot spots of the system might be located inside of the cells [4, 5]. To overcome these problems some
approaches have been developed to build real-time models of the battery system, including one-dimensional models
with lumped masses [6]. Other battery models have been used for estimation of the battery state in terms of state of
health (SOH), state of charge (SOC) or Voltage [7, 8, 9]. However these models do not include a complete overview
of the thermal behavior of all components in the system.
The aim of this paper is to build a digital twin of the complete battery system, including other high voltage components
such as the battery junction box and the bus bars connecting the cells as well as the cooling plate. This is done by
applying model order reduction methods on a high dimensional model (HDM) of the battery system. Therefore,
the digital twin is directly derived from a detailed three-dimensional model. The numerical reduction methods aim
to reduce the computation time for solving the differential algebraic equation of the system. The proposed concept
combines different model order reduction techniques and an electro-thermal battery model in order to effectively
apply them to the large scale dynamical and multi-physical system. The real-time applicable model calculates desired
temperatures at all locations of the battery system and is implemented on the battery management system (BMS).
Based on those calculations the operating strategy and battery cooling can be regulated onboard [10].
There are various model order reduction techniques for linear as well as nonlinear systems that have already been
effectively applied to thermal [11, 12, 13] and fluid models [14, 15, 16]. Likewise reduced order models have been
used to depict the thermal behavior for single cell and battery stacks [17, 18, 19] or to calculate the electric behavior
[20]. Yet, those models do not include the complete battery system with its linear and nonlinear system equations as
needed in the application for a digital twin.
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However, when applying dynamic and nonlinear model order reduction techniques to larger systems, one faces several
challenges.
In the presented concept the battery system is split into three parts, a thermal model, as fluid model and an electro-
thermal model In that way linear model order reduction methods can be applied to the large scale thermal model of
the battery system and the nonlinear fluid part is approximated through a sub model.

DESCRIPTION OF THE HIGH DIMENSIONAL BATTERY MODEL

The examined battery system consists of twelve modules consisting of a 24 cell battery stack. The modules are
located in an aluminum housing and are connected in series using copper connectors. The cooling plate is located on
the bottom of the housing. As cooling fluid a water-glycol mixture (50:50) is used. In addition, the battery system
contains a battery junction box (BJB), a cell management controller(CMC) and a battery management system (BMS).
A schematic picture of the system is shown in Figure 1.
First, a HDM of the battery system is developed and validated with test data. In the model the heat losses inside the
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FIGURE 1. Battery system with its main components: cooling plate, housing, battery modules, battery junction box, cell manage-
ment controller and battery management controller

cells are calculated using an equivalent circuit model (ECM) and ohmic heat loss in all other high voltage components.
The thermal, fluid and electrical equations are solved simultaneously.

Simulation Model of the Battery Module
In this paper the validation with test data is conducted for one module and the corresponding part from the cooling
plate on the bottom. Since the 12 modules in the system are alike, a smaller model can be used for a more detailed
validation. The model of the battery module is shown in Figure 2. The module consists of 24 lithium-ion pouch cells.
Three parallel cells are connected with copper bus bars to eight packs in serial. The cells are modeled as blocks with
a direction dependent heat conduction and a copper and aluminum tab on the minus and plus side respectively. The
cell stack is enclosed in an aluminum housing. The module is placed on an extracted part from the cooling plate with
a thermal gap filler in between.
The HDM is developed in ANSYS Fluent ® using the multi-scale multi-dimensional (MSMD) battery model. The

mesh is built using a polyhedral mesh with 12.2 million cells. The heat loss Q̇ inside the bus bars and tabs is calculated
through the temperature dependent electrical resistance Rel(T ), the current draw I and the cross-section area A and
length l of the connectors using Equation 1.

Q̇ = I2 · A · Rel(T )

l
(1)

The heat loss in the cells is calculated using an equivalent circuit model (ECM), in which the generated heat depends
on the temperature, state of charge (SOC) and current draw in the cell. The ECM is described in the following section.
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FIGURE 2. Model of the battery module with the corresponding cooling plate

Contrary to other software packages in ANSYS Fluent® the ECM is solved at each discretized finite volume inside the
battery cells. A local SOC and temperature distribution in the cells is calculated, thus, each cell volume has a certain
heat source. Further the local change in the resistance inside the cell is considered and a local current distribution
can be obtained. This approach has shown to approximate charge and discharge behavior in batteries with a good
accuracy [21, 22]. The electrical connection between the cells, in our case three serial and eight parallel, is recognized
automatically by the software.

Equivalent Circuit Model
Various approaches of multi-scale and multi-dimensional (MSMD) modeling have been developed to predict the
electric, thermal and chemical behavior of lithium-ion cells. The approaches differ in their complexity, accuracy
and computation time. Mainly the models can be dived into three groups, physical models, empirical models and
equivalent circuit models [23].
The equivalent circuit model can be coupled with a thermal model and is therefore widely used for estimation of
thermal and electrical behaviors of battery stacks. The advantages of this 0D-model are calculation speed and reliable
approximation of the thermal and electrical behavior. For the model an electric circuit with temperature and SOC
dependent data is built. The data is obtained by impedance spectroscopy measurements [24]. In the model the batteries
electrical resistance is calculated with one ohmic resistance (R0) and two parallel resistors (R1 and R2) and capacitors
(C1 and C2) in a row as shown in Figure 3. From the voltage drop in the circuit the heat loss Q̇cell in the cell is

R1 R2

R0

C2C1OCV

FIGURE 3. ECM with the electric resistance R0 and the two parallel capacity and resistor pairs R1 and C1 and R2 and C2

calculated with Equation 2, where I is the current draw, VOC is the open circuit voltage (OCV), V the cell voltage,
Tcell the cell temperature and dVOC

dT the OCV change with temperature. The first term represents electric joule heating
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through the cell resistance and the last term the reversible heat generated through the enthropic reactions during
charging and discharging. For simplification and due to the small contribution to the overall heat the last term is
neglected [23, 25, 26].

Q̇cell =I(VOC − V) − ITcell

dVOC

dT
≈I(VOC − V)

(2)

Validation and Results
For the validation thermal measurements of one module and the cooling plate part were performed. The battery module
is set up with several temperature sensors between the cells and at the bus bars as shown in Figure 4. The two sensors
discussed here are marked through circles.
In the simulation model temperatures are examined at the location of the sensors. Transient simulations are carried

Cells

Temperature sensor

FIGURE 4. Temperatures sensor locations of the tested battery module, the sensor location C1-3 (bottom left) and C1-11 (bottom
right) that are discussed for the validation are marked
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FIGURE 5. Temperatures from simulation and thermal tests over time at sensor locations on plane C1 between cell number 1 and
2 at the bottom left and right hand side

out by applying current profiles used in the tests to the model. Boundary conditions as well as fluid temperature and
mass flow are defined according to the set up in the measurement. Temperature at the sensor locations are compared
over time.
In Figure 5 two temperatures between the cells 1 and 2 are displayed as an example with an applied current profile of
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± 240 A pulses. In this example the right side matches the measurement data at the end of the current profile, wherein
on the left side some deviation can be seen.
Overall, at the end of the current profile the cell temperatures of the simulation model are 1.7 ◦C lower on average
with a mean temperature of 38.1 ◦C. The bus bars reach 44.6 ◦C on average, being 1.6 ◦C lower than the temperatures
from the measurements. The mean deviation between the temperatures of the simulation model compared to the
measurements is 3.8 %.
The maximal temperature deviation by the end of the time slot is located on the left side on Plane C4 with ΔT = 5 ◦C.
This arises from differences in the cooling plate and flow properties compared to the measurements and can also be
related to a slightly underestimated heat loss in the bus bars and tabs. On the right hand side of the plane temperatures
calculated in the simulation match the measurement data. Probably here the cooling flow in the measurement could be
reproduced in the simulation. Due to the accuracy of temperature sensors used in the measurement of 0.5 ◦C further
deviations are expected. In total the model can be used to replicate the thermal behavior of a module accurately enough
for the purpose.
Test data from the full battery system with 12 modules will be used to validate the detailed HDM.

REDUCED ORDER MODEL CONCEPT

In this section the concept developed for the approximation of the battery system through different techniques is
described and discussed.
For the development of the reduced order model (ROM) the HDM is separated into three sub-models based on their
system. A fluid model of the cooling plate, where energy and flow equations are solved, a purely thermal and linear
model of the battery and an electro-thermal model as shown in Figure 6. The concept is described in the patent [27]
that will be published in 2022 and which is the basis for this section.
In the electro-thermal model heat losses inside the cells, high voltage connectors and other electrical components such
as the E-Box are calculated. The cooling plate model consists of the cooling plate with the channels and the cooling
fluid itself. The model calculates heat transfer from the thermal system into the fluid. The thermal model includes
the whole battery system without the cooling plate. Consequently, it consists only of solid parts and linear system
equations. The temperatures of the system components are calculated in this model. ROM methods can be applied to
the linear thermal and nonlinear fluid model separately, resulting in several advantages that will be described in the
following sections.

Thermal ROM

Fluid ROM

Electro-thermal model

Q̇cooling
αfluid

Tfluid

Tcomp

Q̇el

Model Input

Icell

ṁfluid

Tfluid

Output:

Thermal data

of battery

R1 R2
R0

C2C1

FIGURE 6. Coupling of the three sub models for the battery ROM: the electro-thermal model, the thermal ROM and the fluid
ROM
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Electro-thermal 0D-Model
In the electro-thermal model, heat losses from the high voltage components based on the current draw Icell are com-
puted. The calculations include the following parts:

• Solving the ECM described in the Section ”Equivalent Circuit Model” and calculating the heat losses in the
battery cells using the current SOC and temperature (Tcomp)

• Calculating the current distribution between the parallel cell based on the electrical resistance calculated in the
ECM

• Calculating the SOC change for each cell

• Solving Equation 1 to calculate the heat losses in all other components of the current path based on their
electrical resistance and temperature (Tcomp)

The resulting heat losses Q̇el are coupled with its components in the thermal model.

Thermal Model and linear Model Reduction
The solid part of the battery system model is solved using only energy equations, since the electrical part is calculated
in the 0D-model and the cooling plate is calculated separately. Therefore, the model contains only linear equations
and can be modeled as a linear, time-invariant model (LTI). Thus, the main advantages in separating the thermal and
fluid part is that a linear model order reduction technique can be applied. In order to reduce large scale systems linear
model order reduction techniques based on singular value decomposition or Krylov subspaces have been established
[28, 29, 30].
The thermal battery system model can be described by a state space model, where x(t) is the state variable of length
n, u(t) the input vector of length m, and y(t) the output vector of length p. The matrices are namely En×n, the capacity
matrix, An×n, the system matrix, Bn×m, the input matrix and Cp×n and Dp×m the output matrix. The size of matrices
represents the dimension of the system and number of elements in a finite element model (FEM) [31].

Ėx(t) =Ax(t) + Bu(t)

y(t) =CT x(t) + Du(t)
(3)

The matrices of the system are obtained from ANSYS Mechanical ® by following the procedures explained in [28].
Simulations are conducted in steady state and transient and several input variations. The resulting binary files are then
converted to Matlab® compatible files.
In a thermal FEM problem the energy equation is solved for each vol i using the first law of thermodynamics and can
be written as [32]:

Cpimi · dTi

dt
= diλi · (Ti+1 + Ti) + Q̇i + Aiαi · (Tbc − Ti) (4)

Where Cpi is the thermal capacity and mi the mass of an element, λi is the heat conductivity with the element length
di and αi is the convective heat transfer of a boundary condition with an adjacent temperature Tbc and area Ai. Q̇i is
the heat source or heat generated inside the element. Combining Equation 3 and 4 results in the following state space
representation of a thermal problem with the temperature as state variable.

Ṫ(t) =E−1AT(t) + E−1Bq(t)

y(t) =CT T(t)
(5)

Matrix E represents the thermal capacity Cpi of each element and is assumed to be invertible, matrix A describes the
conductive heat transferred to neighbor elements (λi) and constant boundary conditions as convective heat transfer
(αi). The matrix B describes the dependence on input variables such as variable boundary conditions (αi) and heat
sources (Q̇i) of the system [12].
Two possible MOR methods will be considered and compared in their accuracy and suitability for this application
in the future, balanced truncation and padé approximation. In balanced truncation a system as described in 3 is
considered. The aim is to find a projector T to build a balanced realization of the system and truncate the system
based on the largest eigenvalues of the balanced gramians. Smaller singular values contribute to a small amount of
energy transferred from the input u(t) to the output y(t) and thus can be truncated. The first r values are assumed to
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contain most of the energy of the system. Especially for large linear and thermal systems balanced truncation has
been established [33, 12, 34]. The resulting linear and time-invariant ROM can be described as following, where the
dimension r of the reduced system matrices being significantly lower than n (r � n) [35, 29].

ẋ(t) =Arx(t) + Bru(t)

y(t) =CT
r x(t)

(6)

The thermal ROM calculates the temperature of the battery system of all electrical components Tcomp based on the
heat input Q̇el from the electro-thermal model and the boundary conditions αfluid and Tfluid at the cooling plate. Also,
the heat flux Q̇cooling to the cooling plate is calculated.

Approximation of the Cooling Plate and Fluid
The cooling plate is simulated in a CFD software (ANSYS Fluent ®). The model is meshed using a polyhedral
mesh with 22 million cells. Here energy, momentum and mass equations are solved, resulting in a complex nonlinear
system. Since the model is used only to calculate the heat transfer from the battery system into the fluid several
assumptions and simplifications can be made to the sub model. It is for example not necessary for the overall goal to
calculate the velocity, temperature and pressure of the cooling plate and cooling fluid precisely.
For the fluid a fully developed flow is assumed at every time step at a certain flow rate and temperature. Through this

α11, T11

Module 1

α12, T12

α13, T13

S1

S2

S3

FIGURE 7. Approximation of the fluid cooling plate by calculating averaged values of heat transfer coefficient α and Temperature
T at three surfaces (S1, S2 and S3) per module interface

assumption it is possible to calculate the flow stationary, with velocity and pressure values independent from time.
In the fluid model heat transfer coefficients αfluid and temperatures Tfluid are calculated at the interface of the cooling
plate to the battery modules. The values are averaged over three areas per module interface to represent the different
flow sections of the cooling plate. The simplification is shown in Figure 7.
For the validation the fluid model was simulated with a constant heat input from the battery system. The averaged
values of temperature and heat transfer coefficient were obtained from the simulations. Those values were then
applied to the thermal battery system model as boundary conditions and the temperatures inside the battery system
were evaluated and compared to the complete model. Based on the previous assumptions an error of 0.77 ◦C is
estimated in the batteries temperatures when comparing the full model and the decoupled model.
To create a fluid reduced order model Proper Orthogonal Decomposition (POD) is proposed. For this method
snapshots are calculated from the fluid model at each input parameter set using a design of experiments (DOE)
[36, 37]. Here input parameters are the fluid temperature at the inlet Tfluid, the mass flow rate at the inlet ṁfluid and
the heat flux from the 12 modules. Using those snapshots a set of POD modes and function parameters are calculated
that can reproduce the input - output correlation. Another possibility is to use a neural network on the generated data.
The output parameters from the fluid model will be then coupled to the thermal model. The three resulting sub models
are connected through the described variables in Figure 6.
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CONCLUSION

The modeling of battery systems remains an important engineering task for the development of electric vehicles in
order to better understand and estimate the thermal and electrical behavior of battery cells.
As shown in this paper a coupled thermal and thermo-electric model can accurately depict the thermal behavior of the
battery cells. The coupling of the ECM and the thermal model can predict the thermal behavior inside the battery cells
with a mean deviation of 3.8 % from test data. A validation of the complete battery system model will be conducted
with test data and using the software and modeling approaches as described in this paper.
A new modeling approach was discussed for the application of reduction techniques for multiphysical systems. By
separating the original HDM into three sub models simple and established model order reduction methods can be
applied onto each model. The coupling of the ECM and thermal model is done equivalent to the approach used
in the HDM. Further, it was proven that the approximation of the cooling plate through averaged surface values is
sufficiently accurate for the application and coupling with the thermal model.
The proposed methods are yet to be studied and compared for the application. Challenges in future work include the
approximation of the thermal model though reduction techniques with multiple inputs and outputs and reducing the
large model to real-time capable model size.

REFERENCES

[1] C. Julien, A. Mauger, A. Vijh, and K. Zaghib, in Lithium Batteries: Science and Technology (Springer
International Publishing, Cham, 2016), pp. 29–68.

[2] Z. Rao and S. Wang, Renewable and Sustainable Energy Reviews 15, 4554–4571 (2011).

[3] M. A. Hannan, M. S. H. Lipu, A. Hussain, and A. Mohamed, Renewable and Sustainable Energy Reviews
78, 834–854 (2017).

[4] S. C. Chen, C. C. Wan, and Y. Y. Wang, Journal of Power Sources 140, 111–124 (2005).

[5] K. Yeow, H. Teng, M. Thelliez, and E. Tan, “3d thermal analysis of li-ion battery cells with various geome-
tries and cooling conditions using abaqus,” in Proceedings of the SIMULIA community conference, edited by
ABAQUS Inc. (Dassault Systemes, 2012).

[6] X. Lin, H. Fu, H. E. Perez, J. B. Siege, A. G. Stefanopoulou, Y. Ding, and M. P. Castanier, Oil & Gas Science
and Technology–Revue d’IFP Energies nouvelles 68, 165–178 (2013).
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